Kalman filter-based method for Online Sequential Extreme Learning Machine for regression problems

نویسندگان

  • Jarley Palmeira Nóbrega
  • Adriano Lorena Inácio de Oliveira
چکیده

In this paper, a new sequential learning algorithm is constructed by combining the Online Sequential Extreme Learning Machine (OS-ELM) and Kalman filter regression. The Kalman Online Sequential Extreme Learning Machine (KOSELM) handles the problem of multicollinearity of the OS-ELM, which can generate poor predictions and unstable models. The KOSELM learns the training data one-by-one or chunk-by-chunk by adjusting the variance of the output weights through the Kalman filter. The performance of the proposed algorithm has been validated on benchmark regression datasets, and the results show that KOSELM can achieve a higher learning accuracy than OS-ELM and its related extensions. A statistical validation for the differences of the accuracy for all algorithms is performed, and the results confirm that KOSELM has better stability than ReOS-ELM, TOSELM and LS-IELM. & 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Sequential Extreme Learning Machine

The primitive Extreme Learning Machine (ELM) [1, 2, 3] with additive neurons and RBF kernels was implemented in batch mode. In this paper, its sequential modification based on recursive least-squares (RLS) algorithm, which referred as Online Sequential Extreme Learning Machine (OS-ELM), is introduced. Based on OS-ELM, Online Sequential Fuzzy Extreme Learning Machine (Fuzzy-ELM) is also introduc...

متن کامل

Ludwig Maximilians Universität München Dynamic Neural Regression Models

We consider sequential or online learning in dynamic neural regression models. By using a state space representation for the neural network’s parameter evolution in time we obtain approximations to the unknown posterior by either deriving posterior modes via the Fisher scoring algorithm or by deriving approximate posterior means with the importance sampling method. Furthermore, we replace the c...

متن کامل

Fault prediction using the combination of regularized OS-ELM and strong tracking SCKF

As one of the most important aspects in maintenance, fault prediction has attracted an increasing attention for avoiding system catastrophic damage and ensuring reliability. Considering prognosis of unmeasured fault parameter in nonlinear system, a novel forecasting algorithm is presented based on the combination of ROS-ELM (regularized online sequential extreme learning machine) time series pr...

متن کامل

On-line Sequential Extreme Learning Machine Based on Recursive Partial Least Squares

This paper proposes the online sequential extreme learning machine algorithm based on the recursive partial leastsquares method (OS-ELM-RPLS). It is an improvement to the online sequential extreme learning machine based on recursive least-squares (OS-ELM-RLS) introduced in [1]. Like in the batch extreme learning machine (ELM), in OSELM-RLS the input weights of a single-hidden layer feedforward ...

متن کامل

Regularisation in Sequential Learning Algorithms

In this paper, we discuss regularisation in online/sequential learning algorithms. In environments where data arrives sequentially, techniques such as cross-validation to achieve regularisation or model selection are not possible. Further, bootstrapping to determine a confidence level is not practical. To surmount these problems, a minimum variance estimation approach that makes use of the exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2015